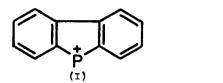
GENERATION OF PHENYLPHOSPHINIDENE AND GROUP V ANALOGUES BY ELECTRON IMPACT

B. Zeeh

Chemisches Institut der Universität Tübingen, Germany

J. B. Thomson

Department of Chemistry, University College, Dublin 4, Ireland


(Received in UK 5 November 1968; accepted for publication 4 December 1968) Phosphinidenes (R- \dot{P} :), the phosphorus analogues of nitrenes, are considered to be intermediates in a number of phosphine reactions.^{1,2} Ionized phenylphosphinidene (C₆H₅p⁺) occurs to a small extent in the mass spectra of triphenylphosphine^{3,4} and some cyclophosphines.² We have found that the phenylphosphinidene cation (<u>m/e</u> 108) and its analogues with other Group $V_{\rm A}$ elements account for the base peaks in the mass spectra⁵ of phenylphosphine (% $\Sigma_{40} = 25$), diphenylphosphine (% $\Sigma_{40} = 40$), triphenylarsine (<u>m/e</u> 152, % $\Sigma_{40} = 40$), and triphenylstibine (<u>m/e</u> 198 and 200, % $\Sigma_{40} = 37$), while the bismuth analogue (<u>m/e</u> 286, % $\Sigma_{40} = 26$) is the second most abundant species in the spectrum of triphenylbismuth. Aniline,⁶ diphenylamine,⁷ and triphenylamine give rise to the phenylnitrene cation to a very minor extent. Neither phenyldichlorophosphine nor other halogenated phosphines³ show any significant amount of phenylphosphinidene ion.

The $C_6H_5X^+$ ions (except when X = Bi) lose one hydrogen in a subsequent step, as is indicated (except when X = Sb) by the appropriate metastable ions. Since 2,4,6- \underline{d}_3 - $C_6H_5P^+$, from tri(2,4,6- \underline{d}_3 -phenyl)phosphine,⁴ suffers random loss of H and D, it is not clear whether this species is open chain, bridged, or cyclic.

The mass spectrum of diphenylphosphine shows an M - 3 fragment from which the hydrogen on phosphorus has been lost, since $\underline{P} - \underline{d}_1$ -diphenylphosphine

111

yields the same ion with loss of deuterium. This species is most probably the 9-phosphafluorenylium cation (I), which is abundant in the spectrum of

triphenylphosphine.^{3,4} Analogous fragments are moderately abundant in the spectra of triphenylarsine and triphenylstibine, of low abundance for diphenylamine⁷ and triphenylamine, and absent for triphenylbismuth.

Rearrangement ions at $\underline{m/e}$ 154 ($C_{12}H_{10}$), 153 ($C_{12}H_{9}$), and 152 ($C_{12}H_{8}$), previously observed⁸ in the mass spectrum of triphenylbismuth, are also seen for diphenylamine⁵ and triphenylamine (extremely weak), triphenyl-phosphine,^{3,5} triphenylarsine, and triphenylstibine, but not for diphenyl-phosphine.

Generous support from Prof. E. Müller and a grant from the Stiftung Volkswagenwerk for the purchase of the mass spectrometer are gratefully acknowledged by B. Z.

REFERENCES

- 1 For leading references see O. M. Nefedow and M. N. Manakow, Angew. Chem., 78, 1039 (1966); International Edition, 5, 1021 (1966).
- 2 U. Schmidt, I. Boie, C. Osterroht, R. Schroer, and H.-F. Grutzmacher, <u>Chem.</u> <u>Ber.</u>, <u>101</u>, 1381 (1968).
- 3 J. M. Miller, J. Chem. Soc. (A), 828 (1967).
- 4 D. H. Williams, R. S. Ward, and R. G. Cooks, J. <u>Amer. Chem. Soc.</u>, <u>90</u>, 966 (1968).
- 5 Determined with an MS-9 spectrometer at 70 eV and 200°; the spectra of the triphenyl derivatives were obtained with the direct inlet system, the others with the heated inlet system.
- 6 P. N. Rylander, S. Meyerson, E. L. Eliel, and J. D. McCollum, J. Amer. them. Soc., 85, 2723 (1963).
- 7 J. H. D. Eland and C. J. Danby, <u>J</u>. <u>Chem</u>. <u>Soc</u>., 5935 (1965).
- 8 P. C. Wszolek, F. W. McLafferty, and J. M. Brewster, Organic Mass Spectrometry, 1, 127 (1968).